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Among the most common events in our daily lives is seeing people in action. Scientists have accumulated evidence
suggesting humans may have developed specialized mechanisms for recognizing these visual events. In the current
experiments, we apply the “bubbles” technique to construct space–time classification movies that reveal the key features
human observers use to discriminate biological motion stimuli (point-light and stick figure walkers). We find that observers
rely on similar features for both types of stimuli, namely, form information in the upper body and dynamic information in the
relative motion of the limbs. To measure the contributions of motion and form analyses in this task, we computed
classification movies from the responses of a biologically plausible model that can discriminate biological motion patterns
(M. A. Giese & T. Poggio, 2003). The model classification movies reveal similar key features to observers, with the model’s
motion and form pathways each capturing unique aspects of human performance. In a second experiment, we computed
classification movies derived from trials of varying exposure times (67–267 ms) and demonstrate the transition to form-
based strategies as motion information becomes less available. Overall, these results highlight the relative contributions of
motion and form computations to biological motion perception.
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Introduction

Everyday we see people moving about the world and
interacting with other individuals. These events form the
basis of our daily social interactions, and perhaps as a
result, there is evidence to suggest that humans have
developed specialized cortical mechanisms for perceiving
biological movement patterns. This view is supported, in
part, by the observation that human observers sponta-
neously recognize human activity from sparse point-light
(PL) depictions of actions that consist of only a handful of
markers attached to the head and joints of the body
(Johansson, 1973). Since the adoption of these stimuli by
vision science, researchers have demonstrated the appa-
rent ease with which observers recognize these sequences
as human actions.
Since this early work, there have been a number of

technological advances that have served to cultivate a
large body of research on biological motion perception.
It has been shown, for instance, that human observers
can recognize a large number of actions in addition to

locomotion, including instrumental actions and social inter-
actions (Dittrich, 1993). Observers accurately discriminate
identity (Cutting & Kozlowski, 1977; Troje, Westhoff, &
Lavrov, 2005), gender (Kozlowski & Cutting, 1977;
Troje, 2002), and emotion (Roether, Omlor, Christensen,
& Giese, 2009) from PL displays of dance (Dittrich,
Troscianko, Lea, & Morgan, 1996) and arm movements
(Pollick, Paterson, Bruderlin, & Sanford, 2001). Clearly,
the sparse information in PL animations is sufficient for
nuanced discriminations of movement styles.
Perception is also robust to many manipulations that

degrade the information available in PL animations.
Observers can recognize human activity when very short
PL animations are embedded in motion-matched clutter, or
noise masks (Thirkettle, Benton, & Scott-Samuel, 2009;
Thurman & Grossman, 2008). Blurring the dots, random-
izing the contrast polarity, and presenting subsets of the
dots dichoptically also does not impair performance
(Ahlström, Blake, & Ahlström, 1997, but see Aaen-
Stockdale, Thompson, Hess, & Troje, 2008). Further,
recognition does not depend on the exact placement and
continuous visibility of the tokens, as demonstrated by
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accurate discrimination of PL animations created with the
positions of dots jittered randomly along the limb and with
an imposed limited lifetime (Beintema & Lappe, 2002).
However, there have been many reports on the

limitations of PL biological motion perception. One of
the earliest observations by Johansson (1973) was that
naive observers do not report stationary frames of PL
sequences to be biological, even though they are recog-
nized as biological when set into motion. This would seem
to imply a critical importance of motion analysis in
biological motion recognition. PL perception is also
impaired under dim light conditions and completely
disrupted when the PL markers and background are
displayed at isoluminance, two manipulations that impair
visual analyses of complex motion patterns (Garcia &
Grossman, 2008; Grossman & Blake, 1999). Scrambling
dot positions or jittering the spatiotemporal phase rela-
tions of PL dots seriously disrupts perception (Ahlström
et al., 1997; Bertenthal & Pinto, 1994; Troje & Westhoff,
2006). Together, these findings highlight the importance
of spatiotemporal cues in the perceptual construction of
PL biological motion.
From the current evidence in the literature, researchers

have developed competing computational models (often
built from statistical and psychophysical measurements of
dominant features in the PL stimuli) that differ in the
extent to which PL biological motion recognition depends
on motion and form analyses. For example, Troje (2002)
used principal components analysis to decompose the
spatiotemporal features that differed between male and
female PL walkers. From these features, new PL sequen-
ces were constructed with gender defined only by select
subsets of the features. It was found that observers relied
more strongly on motion cues than form cues, perfor-
mance that was replicated with a linear classifier. The
conclusion was that much of the nuanced gender infor-
mation carried in the PL displays could be characterized
by a limited number of motion features.
The importance of motion features has also been

highlighted by other computational studies using bio-
logical motion. Motivated by a physiologically inspired
computational model that reproduces a variety of exper-
imental data from the literature (Giese & Poggio, 2003),
Casile and Giese (2005) analyzed the visual features
available in two separate computational pathways of the
model corresponding to form and motion analyses. The
results from this model revealed a stronger influence of
motion features for the perception of PL stimuli. Further-
more, a principal components analysis on mid-level form
and motion cues in PL walkers showed that only the
motion features were largely shared between stick figure
(SF) and PL representations, more evidence for the
importance of motion analysis. Artificial PL animations
built with these critical mid-level motion features, the
sinusoidal antiphase horizontal motion of the wrists and
ankles, were also accurately perceived as human walkers
(Casile & Giese, 2005). Separate experiments also

suggested the importance of this motion feature, finding
that visual sensitivity to point-light actions fluctuated
sinusoidally across time, with peak performance during
the moments of antiphase horizontal, or opponent, motion
(Thurman & Grossman, 2008).
There has been other psychophysical evidence, how-

ever, that has emphasized the importance of form cues for
biological motion perception. For example, expert observ-
ers can learn to discriminate point-light movements from a
single body posture, which can be taken as evidence for
form analysis (Thirkettle et al., 2009; Todd, 1983). Like-
wise, biological motion suffers from an inversion effect,
whereby displaying PL animations upside-down impairs
accurate recognition of actions (Dittrich, 1993; Troje &
Westhoff, 2006), emotions (Dittrich et al., 1996), gender
(Barclay, Cutting, & Kozlowski, 1978), and detection in
noise masks (Bertenthal & Pinto, 1994; Pavlova & Sokolov,
2000). In face perception, the inversion effect has been
argued to be evidence for holistic processing (Farah,
Wilson, Drain, & Tanaka, 1998), and the inversion effect
for bodies has been taken as evidence for the use of global
form templates as a means for recognition (e.g., Reed,
Stone, Bozova, & Tanaka, 2003). An emphasis on form
analysis is also integral to a number of computational
models that discriminate biological motion on the basis of
form templates (e.g., Marr & Vaina, 1982; O’Rourke &
Badler, 1980).
In more recent computational models, a template-

matching procedure compares input frames of a PL
animation sequence to stored templates of stick figures.
The template-matching approach is based exclusively on
form information and also replicates a number of psycho-
physics and neuroimaging results from the literature
(Lange, Georg, & Lappe, 2006; Lange & Lappe, 2006).
The current experiments seek to clarify the discrep-

ancies in the literature as to the key features and computa-
tional mechanisms of biological motion perception. Our
previous experiments using the temporal “bubbles”
method found key temporal intervals in PL walking
direction discriminations, and when discriminating bio-
logical from non-biological motion (Thurman & Grossman,
2008). These current experiments used spatiotemporal
“bubbles” (Fiset et al., 2008; Vinette, Gosselin, & Schyns,
2004) to characterize the spatial and temporal nature of the
diagnostic features that human observers use when dis-
criminating biological motion. We measured this for two
depictions of human actions, point-light (PL) and stick
figure (SF) walkers. This method used reverse correlation
with Gaussian aperture masks to compute classification
movies that illustrate the significant spatial and temporal
regions of the stimulus used for discriminating the human
walkers. If classification movies between PL and SF
depictions were found to be similar, it would imply that
critical features are invariant across the two depictions of
the biological motions. This invariance might reflect mid-
level motion features that are largely shared between the
two depictions (Casile & Giese, 2005). Alternatively,
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differences between the classification movies might indi-
cate how computational and perceptual strategies differ
when form is made explicit in SF as compared to when it is
implicit in PL depictions.
Next, to clarify the role of motion and form computa-

tions for biological motion perception, we computed
classification movies from the performance of a previ-
ously defined model of perception (Giese & Poggio, 2003)
using as input the same “bubblized” walker stimuli that
were shown to observers. The architecture of this model
mimics fundamental features of the human visual system
and contains separable form and motion pathways that
analyze basic shape features (i.e., orientation) and optic
flow, respectively. The pathways are organized hierarchi-
cally, with more complex representations and greater size
and position invariance at higher levels. We compared the
model-derived classification movies for SFs and PL
figures and analyzed the spatiotemporal diagnostic features
that modulate model responses in each pathway. These
results were quantitatively compared to behavioral classi-
fication movies, drawing a link between human behavior
and computations in this neural model of perception.
Finally, we report on a second experiment that analyzed

computational strategies as observers were exposed to
shorter durations of biological motion (down to 66 ms),
which limited the quality and amount of motion informa-
tion while leaving stationary cues intact, albeit for shorter
periods of time. We hypothesized that observers would
shift strategies as a function of exposure time, and such
shifts would be manifested in the classification movies.
We also tested the model’s performance as a function of
exposure time and again compared the behavioral and
model classification movies.

Experiment 1

Participants

Twenty (15 females, 5 males) unpaid undergraduate
students were recruited from the University of California,
Irvine research participation pool and received course
credit for participation. None of the participants had
prior experience with PL biological motion and were
naive to the purpose of the experiment. Participants
reported normal or corrected-to-normal vision and gave
written consent in accordance with the University’s IRB
protocol.

Materials

Participants were seated 40 cm from one of five CRT
monitors (refresh 60 Hz) in the Social Sciences Research
Laboratory at UC Irvine controlled by Pentium 4 Dell

computers running Windows XP. The experiment was
programmed in Matlab (version R2008a) using functions
from the Psychophysics Toolbox (version 3.0.8; Brainard,
1997; Pelli, 1997). The stimulus display rate was 30 frames
per second (33.3 ms/frame).
The PL walker stimulus was recorded from an actor

using a VICON 512 motion capture system and is the
same as used in previous experiments (Jastorff, Kourtzi, &
Giese, 2006; Thurman & Grossman, 2008). It consisted of
13 markers representing the head plus the left and right
shoulders, hips, elbows, wrists, knees, and ankles. The PL
markers were represented by small dark squares (0.2 deg)
on a light gray background. Horizontal translational
components were removed so that the walker appeared
to be walking on a treadmill in the profile, or sagittal
view. Leftward and rightward walkers were created from
the same animation sequence, mirrored across the vertical
axis. The SF was created from the PL actor by drawing
solid lines (approximately 0.1 degree of visual angle in
thickness) between the locations of the markers, consistent
with the human skeleton. Each stimulus consisted of a
complete 2.1-s gait cycle, completed over 62 individual
frames, or postures, and subtended approximately 7.6 degrees
visual angle vertically and 4.8 degrees horizontally.
Masked, or “bubblized”, biological motion is shown in

Figure 1A. This stimulus was created by first randomly
selecting an interval of the gait cycle (467 ms or 14 frames),
and then applying a bubble mask to each frame in the
sequence. The bubble mask was mostly opaque but
revealed portions of the stimulus through randomly
distributed Gaussian apertures with a constant diameter
of 0.8 deg. Thus, the PL or SF animations were largely
invisible, except for the subsets that were visible within
the small windows of the mask. The locations of the
Gaussian apertures were chosen randomly and independ-
ently from trial to trial and were stationary throughout the
trial sequence.
On each trial, the bubblized interval of biological

motion was inserted into a larger centrally located
stimulus aperture (12 � 12 deg) and was jittered randomly
up to 4 deg in each direction from center. The onset of the
target stimulus in the trial sequence varied between 33 and
167 ms after the appearance of the gray stimulus aperture,
which signified the start of the trial.

Procedure

Subjects completed 1500 PL or SF bubble trials in a
1.5-h behavioral session. The number of bubbles on each
trial was adjusted online using a 3–1 double interleaved
staircase procedure (Levitt, 1970) to maintain 80% thresh-
old accuracy in discriminating the walking direction of the
figure (left versus right). Every incorrect response led to
the addition of one bubble to the mask, making more
spatiotemporal information visible to the observer and
thus the task easier. Three consecutive correct responses
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led to one bubble being removed from the image mask,
making the task more difficult. Adjusting the number of
bubbles to achieve a target performance criterion is the
standard procedure introduced by Gosselin and Schyns
(2001), and allowing the number of bubbles to fluctuate
helps make it a “self-calibrating” technique. The critical
factor modulating performance from trial to trial is the
specific spatiotemporal features revealed by the locations
of the randomly distributed bubbles in the mask, and not
necessarily the number of bubbles in the mask. In other
words, the threshold number of bubbles is essentially an
estimate of the percentage of the stimulus space that must
be sampled, on average, to achieve threshold performance.
Each participant completed three blocks of 500 trials and

indicated their responses by pressing the appropriate key
on a keyboard. The staircase was initiated with 15 bubbles
in the first block, and subsequent blocks started with the
staircase estimate of the threshold number of bubbles

from the previous block. The staircase procedure reached
threshold fairly quickly for each participant (after about
70 trials, on average), and the number of bubbles was
relatively stable once threshold was reached.
Each subject was randomly assigned to perform the task

with either all SFs or PL figures (10 subjects for each
condition). Prior to participation in the main experiment,
subjects viewed four cycles of an unmasked walker, and all
immediately identified it verbally as biological (i.e., a person
walking). Participants were then shown five samples of the
“bubblized” target stimulus during task instructions.

Analysis

The threshold number of bubbles was estimated for
each observer by averaging the number of bubbles across
all trials in the final block of the experiment (500 trials).

Figure 1. Schematic of the “bubbles” stimulus construction and method of analysis. (A) A sample trial from Experiment 1 includes
randomly selecting 14 frames of the walker (SF shown) and masking with stationary Gaussian windows (bubbles) to yield a 467-ms
sequence in which partial stimulus information is visible. (B) Analysis: If the trial was judged correctly in the left–right discrimination task,
then the spatiotemporal bubble mask is added to the volume of “hit” trials. If judged incorrectly, then the mask is added to the volume of
“miss” trials. Classification movies are computed by dividing the hit volume by the volume of hits + misses, and then normalizing as
described in the text.
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Using reverse correlation, we computed classification
movies from the bubble masks, with trials sorted by
observer accuracy. The masks were first put into common
body-centered coordinates (the leftward walker) by
reflecting the masks from rightward walking trials across
the vertical meridian. We then performed a multiple linear
regression on the bubble masks across trials (explanatory
variables), using the observer response accuracy as
predictor variables. For computational simplicity, this
amounted to summing all space–time bubble masks that
led to a correct response and dividing by the sum of all
masks across all trials, including hits and misses. The
result was a volume of regression coefficients that
represented, for each pixel and time point, the probability
of a hit when revealed to the observer. We performed this
analysis on all the subject data combined (15,000 trials)
for each condition, resulting in a single spatiotemporal
classification movie for SFs and PL figures.
To assess statistical significance, we transformed each

classification movie into z-scores by estimating the mean
and standard deviation of the null distribution from
background regions of the stimulus sequence that never
contained a signal pixel. This was done for each frame of
the stimulus separately, and the resulting maps were then
spatially smoothed with a Gaussian filter (SD = 4 pixels).
Finally for visualization (Figure 2), we averaged across
identical postures in the gait cycle (1 gait cycle = 2 steps),
threshold the maps at Zcrit = 1.65, p G 0.05 (uncorrected),
and overlaid the walker stimulus. To correct for multiple
comparisons, we also conducted a pixel test (Zcrit = 3.84,
p G 0.05, indicated in Figure 2 as black lines on color bars)
using the Stat4Ci toolbox (Chauvin, Worsley, Schyns,
Arguin, & Gosselin, 2005), which is optimized for use
with classification images.
Finally, to quantify the similarity between classification

movies, we computed the linear correlation coefficient
between the derived classification movies. This is a
widely used approach for computing similarities between
two images for image registration, object recognition, as
well as with salience maps generated from human eye
movement data (Le Meur, Le Callet, Barba, & Thoreau,
2006). We constrained this similarity analysis to regions
of the image with potential stimulus information on each
frame, with the intent of minimizing the effect of noisy
data points from the peripheral background. This was
implemented as including those pixels with PL dots, as
well as a 20-pixel diameter circle around each dot, for a
total of 185,964 pixels included across all 62 frames. The
circle size was chosen to match the size of a single bubble
in the experiment (20-pixel diameter). Similarly, for the
SF condition we drew a 20-pixel diameter silhouette
around the stick figure and included only those pixels in
the analysis, for a total of 256,860 pixels. To estimate
statistical significance from the large number of paired
samples in this analysis, we performed a randomization
test that randomly permuted the mappings between all

data points in the classification movies in 1,000 independ-
ent simulations. The computed correlation coefficients
from the simulations resulted in an estimate of a null
distribution for each stimulus type (PL and SF). The null
distribution for PL and SF movies had a mean correlation

Figure 2. Classification movie results from Experiment 1.
(A) Classification movies derived from the human observers for
the (top) PL and (bottom) SF conditions. (B) Classification movies
derived from the model performance, restricted to the motion
pathway. (C) Classification movies derived from the model’s form
pathway. For visualization, we apply a threshold (Zcrit = 1.65, p G

0.05, uncorrected), such that only significant pixels (i.e., those
that deviate significantly from chance) are colored according to
the respective color bars. The black lines on the color bar indicate
the critical Z-score for the corrected pixel test (Zcrit = 3.84, p G

0.05 corrected). The data are visualized on selected frames of a
single step cycle.
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coefficient of 0, with a standard deviation of 0.0024 and
0.0020, respectively.

Results

Observers required on average 33.3 (SD = 9.3) bubbles
for discriminating the PL figures, and 9.1 (SD = 1.7)
bubbles for discriminating the SF figures. Bubble thresh-
olds are also reported in Table 1.
The results of the classification movie analyses are

shown in Figure 2A, with animated sequences in Supple-
mentary Movies 1 and 2. Subjects used different spatial
patterns of diagnostic cues at different times within the
gait cycle, but similar spatiotemporal features across SF
and PL representations. The correlation coefficient
between the classification movies was highly significant,
r = 0.312, p G 0.001. The most significant features for both
conditions were contained within the feet and the arms,
depending on the phase of the gait cycle. At the moment
when the gait is in full stride, the upper body was the most
diagnostic for the left–right discrimination task. When the
ankles cross the midline, the feet were the most
diagnostic. These cues are likely the most potent because
they contain the strongest acceleration cues and the most
relative (opponent) movement of the limbs, respectively
(Casile & Giese, 2005; Chang & Troje, 2009). Due to the
lack of dynamic cues in the head and shoulders, these
upper body regions likely reflect the use of structural
form-based cues.
These results illustrate two important points. First,

subjects tapped into different spatiotemporal features
depending on the phase of the gait cycle. In some
instances, the most diagnostic features were contained in
the lower body, and in other instances, they were in the
upper body. Thus, subjects can be flexible in their
discrimination strategy depending on the limitations of
the features available. Second, the overall spatiotemporal
pattern of diagnostic information for SF and PL repre-
sentations was extremely similar, suggesting that these

cues are reliable when form features are depicted
implicitly in PL figures or explicitly in stick figures.

Model

To test the role of motion and form computations, we
computed space–time classification movies from the per-
formance of a neural model of biological motion perception
(Giese & Poggio, 2003). This feedforward model was
chosen because it has a biologically plausible architecture
that reproduces several experimental results on biological
motion perception, and it contains separate computational
pathways that mimic the functional divisions of form and
motion processing in the ventral and dorsal visual path-
ways, respectively (Goodale & Milner, 1992; Ungerleider
& Mishkin, 1982).
By computing the performance of these two pathways

independently, we tried to obtain a measure of the
information that is relevant in these two cues to compare
to the behavioral data. Below is an abbreviated summary
of the model. Additional details, as well as a schematic
sketch of the model, are available in previously published
reports (Casile & Giese, 2005; Giese & Poggio, 2003).
The purpose of the computational form pathway is to

extract the posture-based features of biological motion,
even when specified as PL animations. This component of
the model initially detects local orientation features of the
image, much like simple cells in primary visual cortex
(Hubel & Wiesel, 1962). The second level of the form
hierarchy pools across these orientation features, much
like complex cells in V1 (Hubel & Wiesel, 1962) and
neurons in V2 and V4 (Gallant, Connor, Rakshit, Lewis,
& van Essen, 1996; Hegde & van Essen, 2000). The result
of this pooling operation is orientation detectors with
partial scale and position invariance, whose output signals
serve as input to detectors of complex shapes in the next
level of analysis. These shape detectors are arranged to
detect patterns that look like body configurations, or
“snapshots”, and they model view-tuned complex shape-
selective neurons that have been found in the inferotem-
poral (IT) cortex of monkeys (Logothetis & Sheinberg,
1996; Tanaka, 1996). These neurons were modeled as
radial basis functions, whose centers were defined through
training with sample shapes that were derived from
movement sequences. These “snapshot neurons” respond
selectively to key body postures arising during the bio-
logical motion stimuli. The highest level of the hierarchy is
comprised of complex motion pattern detectors that
temporally smooth and summate the activity of the snap-
shot neurons that were trained on a particular movement
sequence. Such neurons might be present, for example, in
the superior temporal sulcus of monkeys (Puce & Perrett,
2003; Vangeneugden, Pollick, & Vogels, 2009).

Threshold Correlation coefficient

PL SF PL SF

Psychophysics 33.3 9.1 0.312 0.312
Motion pathway 28.0 42.6 0.100 0.079
Form pathway 32.8 23.4 j0.125 0.017

Table 1. Summary of bubble thresholds and correlation results for
all conditions in Experiment 1. The correlation coefficients for
psychophysics represent the correlation between PL and SF
classification movies. The correlation values for each pathway
represent the correlation between the model classification movies
for each stimulus condition and the respective psychophysics
classification movies.
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The motion pathway computes motion energy in the
action sequences based on an analysis of the local motion
energy, or optic flow, in the animations. In the brain, this
computation is likely realized by motion-selective neurons
in area MT (Smith & Snowden, 1994). For computational
efficiency in this instantiation of the model, optic flow was
computed from pixel map sequences using the Horn–
Schunck algorithm (Horn & Schunck, 1981). We also
tested the Lucas–Kanade method (Lucas & Kanade, 1981)
and obtained very similar optic flow sequences, suggest-
ing the choice of algorithm in this case does not
substantially influence model performance. To improve
the optic flow estimates and reduce the negative influence
of the aperture problem, we computed optic flow for each
limb separately and then combined optic flow estimates
across the limbs using the max operator for each pixel and
time point. This special computation is similar to the
computation of a layered optic flow (Wang & Adelson,
1994) and ensures correct motion vectors specifically at
occlusion points. This step was motivated by the obser-
vation that humans seem able to generate correct local
motion estimates for articulated figures, as opposed to
standard optic flow algorithms that typically produce
erroneous results at occlusion points. The next level of
the motion hierarchy is designed to be sensitive to
translational motion and motion edges, or opponent
motion, much like neurons found in area MT and
subregions of the MST (Allman, Miezin, & McGuinness,
1985; Tanaka, Fukuda, & Saito, 1989). The third level
uses these mid-level motion signals as input for radial
basis functions that recognize characteristic instantaneous
optic flow patterns that arise during the body motion
stimuli. The neural detectors are the equivalent of the
snapshot neurons in the form pathway. The final level
consists again of motion pattern neurons that temporally
smooth and summate activity from the radial basis
function units that encode optic flow patterns belonging
to the same type of movement sequence. Finally, in both
pathways temporal sequence selectivity is implemented
with recurrent neural networks that have asymmetric
lateral connections (Giese & Poggio, 2003).
In implementing this model, we first trained a single

pathway (motion or form) with full sequences of SF and
PL figures walking left and right. Most parameters of the
model were kept the same as previously published
instantiations of the model, because these parameters
were already optimized to simulate the appropriate
receptive field sizes and other conceptually important
features of the visual system (see Giese & Poggio, 2003).
The only significant change we made to the model was to
change the optic flow input at the front end of the motion
pathway, which was estimated using the Horn–Schunk
algorithm. We tested the model with 5,000 simulated trials
of “bubblized” walkers for each condition. We collected
the accuracy of the responses from the highest level of the
form and motion pathways on each trial, and based on
performance, the number of bubbles was adjusted with the

same staircase procedure as the behavioral experiment,
resulting in 80% model accuracy. The threshold number
of bubbles was estimated by averaging the number of
bubbles across the last 500 trials, analogous to the
behavioral data. Likewise, we used the same methods as
the behavioral experiment to compute spatiotemporal
classification movies. The resulting classification movies
represent the diagnostic information that each pathway of
the model uses to accurately discriminate walking direc-
tion. It should be noted that we are essentially modeling
“experienced” observers. Previous human behavioral
evidence shows that observers significantly improve their
performance after as little as 20 trials (Hiris, Krebeck,
Edmonds, & Stout, 2005; Jastorff et al., 2006), thus we
anticipate that both the model and human observers,
which are exposed to over 1,500 trials, would have
acquired expert performance.

Results

Like the human observers, each pathway of the model
was able to discriminate the leftward from rightward
walker given sufficient information revealed by the
bubbles. A summary of bubble thresholds is reported in
Table 1. The model’s threshold estimates in the PL
condition were comparable to the human observers.
However neither pathway of the model performed as well
as human observers for the SF condition, which suggests
that observers may have been utilizing additional infor-
mation in stick figures that was not captured by the model.
The form pathway did show increased sensitivity to SFs as
compared to the PL animations, which is likely due to the
explicit form information that is lacking in PL sequences.
Classification movies derived from model responses in

each pathway are shown in Figure 2. The classification
movies from the motion pathway (Figure 2B) very closely
resembled those from the human subjects, namely, that
there was significant diagnostic information contained in
the lower body of the figure, in particular the feet. A
correlation analysis revealed a significant positive corre-
lation, p G 0.01, between the behavioral and motion
pathway classification movies for both stimulus conditions
(Table 1). Just like the human observers, the motion
pathway showed strong preference for the ankles as they
cross and the fully extended front ankle as it changes
direction in full stride. However, the motion model also
used features in the crossing knees, while observers failed
to use this cue.
For SFs, there was also a considerable correspondence

between the behavioral data and motion pathway, partic-
ularly in the knees and ankles as they crossed the midline.
The motion pathway also derived diagnostic information
from the front-leading arm, when that arm was positioned
out in front of the body. Thus, in addition to the key
features in the feet used by both the model and the human
observers, the model’s classification movies revealed
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additional potent dynamic features that were largely
untapped by human observers.
The classification movies derived from the form pathway

(Figure 2C) also shared some features with those obtained
from the human observers, but the correlation coefficients
were not nearly as strong as the motion pathway (Table 1).
In the PL condition, the form pathway relied almost
exclusively on upper body structural features, particularly
in the front-most arm. Human observers also appeared to
use upper body cues in specific phases of the gait cycle
and in conjunction with the head and shoulders. There was
a significant negative correlation between the PL behav-
ioral and the form pathway classification movies, indicat-
ing a systematic difference in strategies. This suggests that
in some cases the diagnostic features for observers were
unreliable, or even misleading, for the form pathway, and
vice versa.
In the SF condition, the most diagnostic features for the

form pathway were contained in the front-most arm and
the leading leg. This was not a feature used by the human
observers and suggests that overall the form pathway only
captured a small subset of the human data.
Together, the behavioral and modeling results illustrate

the balance between form- and motion-based strategies.
Each trial of the bubble experiment revealed limited spatial
and temporal stimulus information and observers adapted
strategies to take advantage of the limited information
available to perform the direction discrimination task. In this
experiment, it is dynamic visual cues that appear to dominate
and generalize across depictions of human actions.

Experiment 2

A study by Thirkettle et al. (2009) illustrated that
observer strategies can change depending on the temporal
duration of PL stimuli used in their psychophysical
experiments. To determine whether the specific timing
parameters used in our experiment had biased our findings
toward motion features, we ran a second experiment that
varied stimulus duration from very short (67 ms) to
intermediate durations (133 and 266 ms). We reasoned
that limiting exposure time to only a few frames on each
trial severely limits motion information, while leaving
form information relatively intact. We hypothesized that
the classification movies for PL walkers would show a
shift from motion-based strategies at longer exposure
times (e.g., 467 ms in Experiment 1), to form-based
strategies with very short exposure times.

Participants

Twenty-eight (21 females, 7 males) unpaid under-
graduate students were recruited from the University of
California, Irvine research participation pool. None of

these students participated in the first experiment, and no
participants had prior experience with PL biological
motion. Participants reported normal or corrected-to-
normal vision and gave written consent in accordance
with the University’s IRB protocol.

Methods and analysis

We repeated all of the same methods and procedures
from Experiment 1, with a few notable exceptions. First,
subjects were randomly assigned to one of three con-
ditions, each with different PL exposure durations: 67 ms
(2 frames), 133 ms (4 frames), or 266 ms (8 frames). Ten
subjects participated in the 133- and 266-ms conditions,
each completing three blocks of 500 trials. Eight subjects
participated in the 67-ms condition. Due to the shorter trial
duration, we collected four blocks of 500 trials from seven
subjects, and two blocks of 500 trials from one subject. In
total, 15,000 trials were collected for each condition.
Similar to Experiment 1, the “bubblized” animation

sequence onset between 33 and 233 ms after the start of
the trial. The number of bubbles in the mask at staircase
onset for the first block was initiated with 40, 35, and
30 bubbles in the 67-ms, 133-ms, and 266-ms conditions,
respectively. The staircase procedure and analysis of
classification movies was identical to Experiment 1.
We also ran model simulations with varying exposure

times (67 ms, 133 ms, and 266 ms) corresponding to those
used in the current experiment. The starting number of
bubbles for the model simulations was determined by a
pilot experiment that estimated the appropriate threshold
for each condition and each pathway separately. These
estimates were used as the starting number of bubbles for
the simulations. The procedure for collecting and analyzing
model data was otherwise the same as in Experiment 1.

Results

Bubble thresholds for each condition are plotted in
Figure 3A. Sensitivity, as measured by the number of
bubbles needed for threshold performance, increased
quickly as sufficient spatiotemporal information became
available. The data illustrate that sensitivity increased

Figure 3. Classification movies, thresholds, and correlation results
from Experiment 2. (A) Bubble thresholds as a function of
stimulus duration for human observers (psychophysics) and
the model. Error bars indicate T1 standard error of the mean.
(B) Classification movie results for all stimulus duration con-
ditions, as derived from the human observers (psychophysics)
and the model (motion and form pathways). Classification
movies are visualized as described in Figure 2. (C) Correlation
coefficients (n = 185,964 pixels) between behavioral and model
classification movies for all duration conditions, including Experi-
ment 1 (467 ms).
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non-linearly as exposure time increased, and leveled off
after about 266 ms. Such a non-linearity in the integration
of information in biological motion is consistent with the
initial reports of the minimum information needed to
recognize biological motion (Johansson, 1973) and previous
reports of duration thresholds (Thurman &Grossman, 2008).
The bubble thresholds derived from the computational

model yielded a very similar pattern of results. Both the
form and motion pathways required fewer bubbles with
increasing exposure durations and showed a similar non-
linear increase in sensitivity with an asymptote at a few
hundred milliseconds.
Classification movies derived from behavioral responses

andmodel responses in each pathway are shown in Figure 3B.
Human observer classification movies over space and time
were similar across the three durations, with a few key
differences. At the shortest duration (67 ms or 2 frames),
observers relied almost exclusively on upper body form
cues, most notably the shoulders and head. In the shortest
duration condition, this feature was most diagnostic at the
point in the gait cycle when the limbs were aligned, but at
longer exposure durations was diagnostic throughout the
gait cycle. Thus, the head and shoulders appear to be a
key form cue that is diagnostic of facing direction and
readily available to human observers.
At the longer exposure durations, observers also use

diagnostic features in the ankles. The strength of this cue
increases with stimulus duration, but even with as little as
133 ms (4 frames) the features contained in the movement
of the feet became reliably diagnostic.
The model performance at these varying exposure

durations captured components of the human perfor-
mance. The motion pathway of the model largely replicated
the findings of the lower body, with the same reliance on
the movement of the feet that strengthened with longer
exposure durations. The form pathway relied exclusively
on upper body features at all exposure durations with a
pattern quite similar to observers.
The correlation analysis between the behavioral classi-

fication movies and each pathway illustrates the transition
from form-based strategies with short exposures to
motion-based strategies with longer exposure times
(Figure 3C). There was a significant positive correlation
(p G 0.01) between behavioral results and the form
pathway at exposure times less than 267 ms. In contrast,
there was a significant positive correlation (p G 0.01)
between behavioral results and the motion pathway when
the exposure time was greater than 267 ms. These data
suggest that the transition from form- to motion-based
strategies occurs between 200 and 300 ms.

Discussion

In the present series of experiments, we combined
psychophysical and computational methods to investigate

the critical space–time features for biological motion
perception. These experiments used the bubbles technique
to restrict the information available to observers in the
spatial and temporal domains randomly on each trial, and
then assessed sensitivity to space–time features using
reverse correlation. The result of this method is the
diagnostic information that observers use to discriminate
the walking direction of PL and SF biological motions.
The results from our classification movies revealed that

human observers used a combination of form and motion
cues, regardless of the type of visual presentation (PL or
SF). In particular, observers relied heavily on upper body
posture (head and shoulders) and lower body dynamics
(the feet) when discriminating the facing direction of a PL
or SF walker. These findings replicate previous work on
the importance of upper body alignment on these
discriminations (Lange et al., 2006) and the importance
of dynamic information available in the feet (Casile &
Giese, 2005; Mather, Radford, & West, 1992; Troje &
Westhoff, 2006).
These interpretations are corroborated by results from

model simulations, primarily from the performance of the
computational motion pathway. The motion pathway
discriminated walking direction by relying heavily on
the lower body, tracking the feet and knees as they move
in the gait cycle. Specifically, because the second layer of
the model computed local opponent motion, the classi-
fication movies illustrated primarily those temporal inter-
vals and locations that contained this mid-level motion
feature. The motion pathway failed to reveal dynamic
cues in the head and shoulders, which is not surprising
given the relative immobility of these points. In contrast,
the form pathway used largely different key form features
than those used by the human observers at long exposure
durations. The key features from the form pathway were
isolated to the leading arm and upper leg. Thus, although
task-related diagnostic form features exist in the PL and
SF animations, human observers appear to be relatively
insensitive to them.
In the second set of experiments, we manipulated the

exposure time of the PL walker. Both the observers and
the computational model showed the same non-linear
decrease in threshold as exposure time increased. The
observer classification movies, and the correlation analy-
sis with the model’s classification movies, revealed a
gradual shift from using motion features at the longer
durations to form-based features at the shortest durations.
These data suggest that the transition point from using
primarily form cues to motion cues occurs at around 200–
300 ms. While observers did appear to use form cues at all
durations, the motion features clearly dominated when the
temporal duration was sufficiently long for the visual
system to use the motion information.
Together, our findings characterize motion and form

features that observers use to discriminate human walkers.
Regions on the upper body, including the head and
shoulders have minimal movement, and yet are diagnostic.
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Observers used these form cues for discriminating both
the SF and PL animations, suggesting that implied form
information in biological motion is as potent as when the
form is made explicit. In previous work, Lange et al.
(2006) emphasized the importance of upper body posture
as a form cue, arguing that the spatial displacement of the
limbs from the vertical meridian is a diagnostic feature for
discriminating walking direction, as performed by their
template-matching model. The classification movies from
our model appeared to pick up on this cue and additional
postural cues, for example in the position of the front-
most arms and legs. Yet observers were not particularly
sensitive to those features of the walkers. We conclude
that observers simply do not behave as ideal observers.
This is a finding that was demonstrated in previous work
(Gold, Tadin, Cook, & Blake, 2008) comparing human
performance to an ideal observer and showing that
humans are not particularly efficient with full-figure or
PL biological motion.
At least two motion cues have been identified that

facilitate biological motion perception: the relative oppo-
nent motion of the limbs and acceleration of the feet.
Opponent motion occurs when the limbs cross, such as the
relative motion of the feet or the swinging of the arms.
Acceleration cues are prominent in the ankles, for
instance, when the ankles reach the peak of their trajectory
and change direction to head toward the midline. Artificial
PL animations constructed from opponent motion features
are often identified as biological (Casile & Giese, 2005),
and PL walkers with acceleration cues removed are more
difficult to perceive (Chang & Troje, 2009).
An additional consideration is the likely task depend-

ency of these key features, as observers can adopt unique
strategies as experimental conditions demand. For exam-
ple, Thirkettle et al. (2009) recently demonstrated that
while detection in motion-matched noise caused observers
to adopt a motion-based strategy, discriminating very brief
biological from scrambled animations without noise
caused observers to adopt a form-based strategy. We
likewise show here that changing the stimulus duration
can affect observer strategies by encouraging form
analysis for short durations and motion analysis for
durations longer than 267 ms. Thus, it is imperative to
consider task demands, and especially temporal duration
parameters, when interpreting behavioral data from PL
experiments.
The spatiotemporal bubbles technique as a means for

identifying critical diagnostic information has a number of
strengths and weaknesses. One disadvantage is the
artificial nature of the experimental conditions, breaking
up the biological kinematics into a number of space–time
fragments that must be perceptually integrated. In the
point-light condition, however, this could be considered a
more sparse depiction of an already degraded animation.
Moreover, because the bubbles technique is best suited to
measuring explicit diagnostic parts of an image, as

opposed to reconstructing behavioral receptive fields
(Gold, Murray, Bennett, & Sekuler, 2000), this technique
is particularly well suited to recover local space–time
features contained in individual point lights.
In considering the strengths and weaknesses of the

bubbles technique in estimating key diagnostic features,
Murray and Gold (2004) have argued that the bubbles
method, in practice, may bias observers to use local
features for discrimination that they would not otherwise
if they had access to the global stimulus. It is important to
note, however, that bubbles is a “self-calibrating” method,
and that the staircase procedure would reveal any global
or large-scale relational features that were necessary for
discrimination (Gosselin & Schyns, 2001). In practice,
this would be evidenced by an increase in the threshold
number of bubbles for our tasks such that global structure
would be reliably revealed. At the same time, the size of
the bubble used in the experiment limits the minimum
spatial extent of the diagnostic features, which in our case
was approximately the size of a single point-light token.
Considering this, our results clearly show that specific
local space–time features (subsets of the overall structure)
are sufficient for the discriminations in our task.
An advantage of the bubbles method, however, is

overcoming the inherent limitations associated with add-
ing external noise to the stimulus, as is used in dot
masking techniques (Hiris, 2007). Although dot masks are
a common means for testing biological motion sensitivity,
biological motion is notoriously difficult to mask in noise
(Hiris, Humphrey, & Stout, 2005) unless the animation is
inverted (Pavlova & Sokolov, 2000) or presented in the
periphery (Thompson, Hansen, Hess, & Troje, 2007). The
most effective masks are those that are closely matched to
the local space–time features of the actor, such as small
triads of dots or scrambled walker masks (Bertenthal &
Pinto, 1994). Although ideal for controlling psychophys-
ical performance, matching noise masks have the unfortu-
nate effect of forcing the observer to perceptually organize
the animation into groups of signal and noise, a step that is
inherently intertwined with the discrimination task.
Hence, there may be ambiguity as to whether the
measurement sensitivity is driven by key features in the
biological motion, or by the figure–ground segmentation
itself (Thompson et al., 2007).
Because the bubbles do not introduce clutter or noise,

we essentially eliminate the process of segmentation.
Instead, Gaussian apertures reveal portions of the anima-
tion, similar to viewing a person walking through a forest
with occluding leaves in the visual field, for instance.
Importantly, the bubble mask can be suitably applied to
other renditions of biological motion like SFs or even
fully illuminated natural images, which would otherwise
be non-trivial to obscure with an equivalent mask.
The current technique is similar in spirit to the

correlation map technique introduced by Lu and Liu
(2006). In an elegant study, the researchers used reverse
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correlation to compute dynamic classification movies
using white noise masks in a forward/backward walking
discrimination task. Their analysis revealed classification
movies showing that each individual point light, on
average, contributes equally to the discrimination task,
supporting the hypothesis of global analysis of biological
motion.
The discrepancy between those results and our current

results may be attributed to a number of possible factors.
Most critically, in our experiment, observers viewed a
short segment of the overall gait cycle on each trial, which
served to reveal the temporal dynamics in the diagnostic
space–time features. In contrast, Lu and Liu (2006)
displayed a full gait cycle on each trial and their analysis
would not capture fluctuations in the behavioral signifi-
cance of specific postures or individual point lights over
time (Thirkettle et al., 2009; Thurman & Grossman,
2008).
A second consideration is the inherent strengths and

weaknesses of bubbles and white noise analyses in
revealing local and global features, respectively. Because
the bubbles technique may serve to emphasize local
features, our experiments were more closely designed to
reveal diagnostic local space–time features. A weakness,
however, is that our experimental design may also have
served to encourage observers to adopt a more local
strategy, while the white noise mask may encourage a
global strategy (Murray & Gold, 2004). This is an
important consideration for comparing the two experi-
ments, and thus we interpret our findings as complemen-
tary to, and not contradictory of, those findings of Lu and
Liu (2006).
Lastly, differences in task demands and stimulus

generation may have contributed to the differing results.
Our subjects participated in a left/right walking direction
discrimination task on motion-captured sequences, while
subjects in Lu and Liu’s (2006) study completed a
forward/backward discrimination task on Poser-generated
animations. A recent study illustrated that local motion
cues in the feet are important for discriminating walking
direction (Saunders, Suchan, & Troje, 2009), particularly
with PL displays derived from motion capture data and
that artificial PL walkers generated from the Cutting
algorithm (Cutting, Proffitt, & Kozlowski, 1978) differ in
perceptually relevant ways from motion-captured walkers.
Thus, these simple stimulus differences may have also
played a role in the differing results.
Overall, the space–time bubbles technique renders

classification movies with sufficient spatial and temporal
resolutions for identifying key features in biological
motion. We have also shown this to be an apt tool for
illustrating the stimulus features that modulate responses
of a computational model. Although in practice it is
sometimes unclear exactly what features are modulating
model responses, this method can be a useful tool for
testing and understanding models of perception.
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